Greater Monterey County Integrated Regional Water Management Program Regional Water Management Group Meeting

August 18, 2021 Zoom Conference Call

RWMG Entity Attendees:

Horacio Amezquita - San Jerardo Cooperative, Inc. Jenny Balmagia - Central Coast Wetlands Group Melanie Beretti - Monterey County Housing and Community Development Department Shandy Carroll - Monterey County Housing and Community Development Department Ross Clark - Central Coast Wetlands Group Beth Febus – Big Sur Land Trust Emily Gardner - Salinas Valley Basin Groundwater Sustainability Agency Bridget Hoover - Monterey Bay National Marine Sanctuary Donna Meyers - Salinas Valley Basin Groundwater Sustainability Agency (GSA) Zane Mortensen – Rural Community Assistance Corporation Heidi Niggemeyer - City of Salinas Shinobu Okano - City of Salinas (Stormwater Technician) John Olson - California State University Monterey Bay Paul Robins - Resource Conservation District (RCD) of Monterey County Rachel Saunders - Big Sur Land Trust Brian True - Marina Coast Water District

Non-RWMG Attendees:

Doug Cardian Doug Dowden – City of Marina Larry Harlan – Central Coast Regional Water Quality Control Board John Hunt – UC Davis Shanta Keeling – Central Coast Regional Water Quality Control Board Sarah Lopez – Preservation, Inc. Kelli McCune – Sustainable Conservation Jennifer Morales – Department of Water Resources (Climate Change) Abby Ostovar – Montgomery and Associates Susan Robinson – Greater Monterey County IRWM Program Director

Meeting Minutes

1. Brief Introductions.

2. Central Coast Water Board TMDL Projects in the Elkhorn Slough and Lower Salinas River Watersheds: Central Coast Water Board staff Shanta Keeling and Larry Harlan provided a summary of TMDLs under development for biostimulation in the Elkhorn Slough, and organophosphate pesticides and turbidity in the lower Salinas River watershed. In addition, they discussed a previously-adopted TMDL for nutrients in the Salinas River watershed and provided information on how to stay informed of TMDL projects.

3. CSUMB Water Quality Research: John Olson, Assistant Professor of Freshwater Ecology in the

Department of Applied Environmental Science at California State University Monterey Bay, presented research that he and his team conducted last fall to assess the relative impacts of different agricultural management practices on water quality in the Salinas and Pajaro Valleys.

4. Salinas Valley Basin Groundwater Sustainability Plans: Abby Osovar, Montgomery and Associates on behalf of the Salinas Valley Basin Groundwater Sustainability Agency, presented the Draft Groundwater Sustainability Plan Overviews for the Langley, Eastside, Upper Valley and Forebay Subbasins.

The next RWMG meeting will be held on October 20, 2021, 1:30PM – 3:30PM.

TMDL Projects in the Greater Monterey County Region

Regional Water Management Group Meeting August 18, 2021

Water Boards

Larry Harlan and Shanta Keeling

Objectives

- Describe what a TMDL project is
- Summarize TMDLs:
 - Currently under development in the Greater Monterey County area
 - Projects that have been completed
- Provide information on how you can participate in TMDLs under development
- Describe how you can obtain more information about all TMDL projects

Why do a TMDL?..

Federal Clean Water Act:

States Must "List" Impaired Waterbodies Not Meeting WQ Standards

"Listed" or "Impaired" Waterbodies:

States (Water Board) must address = TMDL

State TMDL Policy

What is a TMDL?..

TMDLs in development

- Elkhorn Slough/Bennet Slough biostimulatory substances
- Lower Salinas River watershed organophosphate pesticides and toxicity
- Gabilan Creek watershed turbidity

5

Elkhorn Slough/Bennet Slough biostimulatory substances

Elkhorn Slough, Bennet Slough, Moss Landing Harbor, Los Carneros Creek;

- Dissolved oxygen
- pH

6

- Un-ionized ammonia
- Chlorophyll-a
- Nitrate
- Turbidity

Elkhorn Slough/Bennet Slough biostimulatory substances

July 2019, Kick-off meeting

7

- 1. October 2019 First meeting
- 2. March 2021 Workplan, progress on modeling
- 3. June 2021 Biostimulatory targets (biologically-focused)
- 4. Summer 2021 update/calibration findings focused on water quality of watershed and estuary
- 5. Early fall 2021 feedback on calibration report?? Water Board proposal on biostimulatory targets
- 6. Late fall 2021 Calculation of TMDL and source attribution analyses
 - a) Discussion/revised biostimulatory targets
 - b) Discussion of how load allocations would be parsed
- 7. Winter 2021 Load and waste load allocations
- 8. Early Spring 2022 Stakeholder feedback on technical reports

Elkhorn Slough/Bennet Slough biostimulatory substances

8

ltem	Target Dates
Technical Support Services (SCCWRP Contract)	July 2019 - April 2022
Draft TMDL Project Report	early 2023?
Scientific Peer Review	mid 2023?
Public Comment on TMDL Project Report	late 2023?
Central Coast Water Board Adoption	early 2024?

Lower Salinas River Organophosphate Pesticides and Toxicity TMDLs

- Current TMDL will address chlorpyrifos, diazinon, malathion, and toxicity impairments
- Data analysis report completed October 2020 (includes impairment assessment and proposed numeric targets)
- Draft TMDL documents for review in fall/winter 2021

Water Body Name	Water Body Identification	Impairment
Alisal Creek	CAR3097009519990222130537	toxicity
Alisal Slough	CAR3091101020090311204028	diazinon, toxicity
Blanco Drain	CAR3091101019981209161509	chlorpyrifos, diazinon, toxicity
Chualar Creek	CAR3091900020080604161337	chlorpyrifos, diazinon, malathion, toxicity
Espinosa Lake	CAL3091900020020117151744	chlorpyrifos, diazinon,
Espinosa Slough	CAR3091101019981230135152	diazinon, malathion, toxicity
Gabilan Creek	CAR3091900019990304092345	toxicity
Merritt Ditch	CAR3091101020080604152147	diazinon, toxicity
Moro Cojo Slough	CAE3060001519981209132246	toxicity
Moss Landing Harbor	CAB3060001419981214121135	chlorpyrifos, diazinon
Old Salinas River Estuary	CAE3060001419981214143807	chlorpyrifos, diazinon
Natividad Creek	CAR3091101020050531125140	diazinon, toxicity
Old Salinas River	CAR3091101020080611145518	chlorpyrifos, diazinon, toxicity
Quail Creek	CAR3091900020011227140647	chlorpyrifos, diazinon, malathion, toxicit
Salinas Reclamation Canal	CAR3091101019980828112229	chlorpyrifos, diazinon, malathion, toxicit
Salinas River (lower, estuary to near Gonzales Rd)	CAR3091101020021007193102	chlorpyrifos, diazinon, toxicity
Salinas River Lagoon (North)	CAE3091101019980828143232	chlorpyrifos, toxicity
Tembladero Slough	CAR3091101019981209131830	chlorpyrifos, diazinon, malathion, toxicit

45 Impairments

California Water Boards

18 WB's

Numeric Targets

- The TMDL will establish targets for:
 - Specific pesticide concentrations,
 - Additive toxicity (a measure of synergistic effects of multiple OP pesticides), and
 - Toxicity to invertebrate test organisms.

Salinas Rec Canal De-listing Diazinon

Graph of diazinon concentrations for all Salinas Reclamation Canal monitoring sites.

Gabilan Creek Watershed Turbidity TMDLs

- TMDL Project will address turbidity listings/impairments
- Draft Project report completed and scientific peer reviewed
- Draft documents available for review in Fall 2021

Gabilan Creek Watershed Turbidity TMDLs

WATERBODY	SITE ID.	NUMBER OF SAMPLES	COLD % OF SAMPLES ≥ 25 NTU	WARM % OF SAMPLES ≥ 40 NTU	50TH PERCENTILE MEDIAN (NTU)
Gabilan Creek	309GAB	92	91%	86%	259
Natividad Creek	309NAD	164	88%	76%	100
Alisal Creek	309ALG	158	89%	81%	119
Salinas Reclamation Canal	309JON	161	n/a	57%	52
Tembladero Slough	309TEH	162	n/a	90%	114
Old Salinas River Channel	3090LD	299	81%	70%	74
Alisal Slough	309ASB	157	65%	45%	36
Merrill Ditch	309MER	162	93%	86%	107
Santa Rita Creek	309RTA	60	90%	83%	200

Potential Sources

Photo sources: CCOWS Sediment Study

To participate in TMDLs under development Use our e-mail subscription lists

- Visit the Central Coast Water Board website
 <u>https://www.waterboards.ca.gov/centralcoast/</u>
- And subscribe to our e-mail subscription services
 <u>https://www.waterboards.ca.gov/resources/email_subscriptio_ns/reg3_subscribe.html</u>
 - "Elkhorn Slough Watershed biostim TMDL"
 - "Salinas River Pesticide TMDLs"
 - "Gabilan Creek Turbidity TMDL"

0

×

Î

0

Camornia water boards

	Nation: As the state transitions from the COVID-0	th emergency, pl	lease contact yo	ur local Mater Board t	o arrange necessary	file reviews-			3
	(# 3 A Share E 12					1	Mend Un Car	defits Suburbe	O Settings
20	WATER TOALSOS	ATA Board	Programa	Drinking Water	Hater Quality	네. Water Rights	Notices	Nater Boards	Q, Search

Manage 1	Cardon Contra 1	Entral South	LOUIS CONTRACTOR	Real Subservit
1.000.000			the second second	and second

Central Coast Regional Board (Region 3) - Email List Subscriptions

Region 3 Email Subscription Form	
Instructions: 1. Enter your Email Address 2. Enter your Full Name (ex: Entername lastname) 3. Check the boass below to subscribe to our email lists, tou may select as many lists as you wish. Our objective is to periodically email information about these topics to the members of these lists. 4. After making your selection(s), please click on the Subscribe button. 5. An email confirmation notice will be sent to you. Please reply to this message in order to be added to the email list.	Signup Details Email Address: (vepared Veer Pull Neme: (vepared (e.g.: John Smith) Click Subscribe Buttor: Maanlan
Choose one or more email lists:	
Board Meeting Agenda S00id List / Integrated Report Apricultural Order - Disorctionary Review Baland Canyon Interstated Parties Basin Planning Triennial Review Buckley Road Area TCE Investigation Cal American Water Decalination (MPRGP) Cambria Bater/Waterovater Cannoli Luthivation Regulatory Program Central Coast Ambient Monitoring Program Cettal Coast Ambient Monitoring Program	Immigated Lands Program Lange Domestic Wastewater General Order Luce Bennos Oreix Nitrate TMDs. Los Disos Wastewater Project Lower Salinas River-Reclamation Canal Basin Nutrient TMDs. Lower Salinas River-Reclamation Canal Basin Nutrient TMDs. Lower Salinas River-Section Canal Basin Nutrient TMDs. Lower Salinas River Section Taxicity TMDL. Municipal Storm Water - Salinas MKS In Groundwater POSE Diablo Canyon Power Plant Pagiaro Watershed Nutrient Pesticide TMDL. Pesticide Water Quality Criteria Development Rivet Salina Bise Green Algae Rivet Bise Green
Conversionmental Justice Conversional Justice Conversional Conversion TMOL Conversion C	Salinas River Pesticide TMDLa San Antonio Greek Nutrient TMDL San Simeon Greek Nutrient TMDL Santa Naca Materialed TMDL Santa Nace River Basin Nutrient TMDL Santa Nace River Basin Nutrient TMDL Septic Systems Timber Harvest Winery Seneral Order

TMDLs Completed

- Sediment toxicity (2017)
- Nutrients (2013)
- Chlorpyrifos and diazinon (2011)
- Fecal coliform (2010)

To find information regarding completed TMDLs

• Visit the Central Coast Water Board "TMDL Program" website

https://www.waterboards.ca.gov/centralcoast/water_issues/prog rams/tmdl/303d_and_tmdl_projects.html

TMDL Projects

Central Coast - TMDL Projects

For more information on Total Maximum Daily Loads (TMDLs), please see our general information page on TMDLs. Please see the lower section of this page called "TMDL Resources" for other TMDL related links.

TMDL Projects Currently in Development

- · Elkhorn Slough and Bennett Slough biostimulatory substances TMDL
- Pinto Lake catchment TMDL addressing cyanobacterial blooms
- Gabilan Creek Watershed Turbidity TMDL
- Santa Ynez River basin nutrients TMDL
- Pesticide Water Quality Criteria Development
- Salinas River watershed organophosphate pesticides and toxicity TMDL

The section below is a list of the all the TMDL Projects approved or in development.

TMDL Project Names - listed in alphabetical order

Approval dates indicate Central Coast Water Board approval.

- Aptos/Valencia Creek pathogen TMDL, approved May 8, 2009
- Arroyo de la Cruz indicator bacteria TMDL, approved May 17, 2011
- Arroyo Paredon diazinon TMDL, approved March 14, 2013
- Arroyo Paredon nitrate TMDL, approved December 5, 2013

Questions/Discussion

Contact Info

- Shanta Keeling, <u>Shanta.Keeling@waterboards.ca.gov</u>, or 805-549-3464
- Larry Harlan, <u>Larry.Harlan@waterboards.ca.gov</u>, or 805-594-6195

Assessment of agricultural management practices on water quality Salinas and Pajaro Valleys

Applied Environmental Science California State University Monterey Bay

Gilbert Mak, Savannah Johnson Peña, and Dr. John Olson

Tasks

- 1. Obtain and format Irrigated Lands Regulatory Program (ILRP) farm management practice data
- 2. Revise hydrologic framework to better link farming locations to water quality observations
- 3. Use the revised hydrologic framework to characterize the farming practices and environment (e.g., topography, climate, soils, etc.) of each watershed.
- 4. Develop empirical models relating water quality to both farming practices and environmental factors (e.g., soils, climate, geology)
- 5. Determine which farming practices are related to changes in water quality and how natural factors interact with these relationships

Analysis Overview

- CMP nutrient data downloaded from CEDEN for WY2016 to WY2018
- Received ILRP data from Central Coast Water Board
- Delineated watersheds using CMP monitoring locations to account for upstream practice effects
- Download publicly available environmental data and aggregate by watershed
- Cleaned and combined CMP (response) and ILRP BMP (predictor) data and aggregate by watershed
- Developed Random Forest models identify correlations between farming practices, environmental factors, and water quality

Study Area

- Pajaro and Salinas watersheds
 - ~ 26,202,469 acres
- Spans five counties
- ~ 3,000 farming operations (Tiers 1-3)
- 52 CMP stations

Watershed Delineations

Predicting Water Chemistry

Random Forest (RF) Modeling

 Recursive partitioning creates regression trees [×]
 (CART)

- Trees built on random subsets of data & predictors
- Unused data used to evaluate

Predicting Water Chemistry

Random Forest (RF) Modeling

- Build 1000s of trees
- Predicts outcomes by averaging across trees

- Advantages:
 - Does not overfit
 - Effectively models non-linear data
 - Incorporates interactions
 - But cannot extrapolate!

Response Variables

- 32 Random Forest models
- A Ammonia as N total
 N2 Nitrate + Nitrite as N, Total
 N Nitrogen, Total
 P Phosphorus as P, Total
 Annual (Oct Sep)
 Concentration
 First Flush (Oct)
 Winter (Oct Mar)
 Summer (Apr Sep)

Predictors

- Nutrient Management: Practice Implementation 15
- Drainage 5
- General ranch characteristics 6
- Irrigation 3
- Ground water 3
- Nitrogen present or applied 2
- Geologic and environmental 11

Nutrient Management – Practice Implementation

Abbreviation	Definition
IA1	Evaluated fertilizer needs and timing of application
IA2	Scheduled fertilizer applications to match crop requirements
IA3	Nitrogen concentration in irrigation water
IA4	soil nitrate or soil solution nitrate
IA5	Used precision techniques to place fertilizer in the root zone
IA6	Nitrogen in plant tissues
IA7	Phosphorus in soil
IA8	Nitrogen and phosphorous content of organic amendments
IA9	Mixed and loaded fertilizers on low runoff hazard sites
IA10	Used urease inhibitors and/or nitrification inhibitors
IA11	Modified crop rotation
IA12	Treatment systems (eg wood chip bioreactor)
IA13	Other
IA14	None
IA15	Answer left blank or No ACF

CMP water quality: Ammonia

CMP water quality: Nitrate + Nitrite

CMP water quality: Total Nitrogen

CMP water quality: Phosphorus

Model Performance

% Var Explained						
Analyte		Annual	First Flush	Summer	Winter	
Ammonia	Concentration	30.8	35.27	0.63	10.84	
	Load	10.01	-4.58	42.23	5.94	
Nitrate +Nitrite	Concentration	71.38	38.18	72.49	55.73	
	Load	11.45	41.2	71.02	-0.8	
Total Nitrogen	Concentration	72.31	46.31	61.72	68.19	
	Load	13.62	40.76	72.23	6.81	
Phosphorus	Concentration	26.71	30.6	63.43	20.03	
	Load	23.67	41.53	48.4	5.58	

Red cells $R^2 < 0.3$

Partial Dependence: Well NO3 + NO2

Partial Dependence: Annual Ammonia Concentration

- $R^2 = 0.308$
- Predictors
 - Water table Depth (+)
 - IA15 no answer (+)
 - Tier 1 (-)
 - Well NO3 (+)

Partial Dependence: First Flush Total Nitrogen Concentration

Partial Dependence: Summer Total Nitrogen Load

- $R^2 = 0.722$
- Predictors
 - Tier 2 (+)
 - IA2, scheduled fert (-)
 - IA5, precision fert (+)
 - Crop acres (-)
 - Irrigated acres (+)
 - IA1, evaluated fert (+)
 - IA9, prep in low runoff $(+)^{\frac{9}{4}}$
 - IA3, Irrig water N (+)
 - IA6, N in plants (+)

Tier 2

3000 4000

6e+04

IA5, precision fert

8e+04 1e+05

Partial Dependence: Nitrogen In Irrigation Water

Annual NO3 + NO2 Concentration

Predictor Interaction

Annual - Concentration

Summer - Load

Top Predictors - Concentration

- Well Nitrite
 - Nitrate + Nitrite (+)
 - Total Nitrogen (+)
 - Phosphorus (-)
- Well Nitrate
 - Ammonia (+)
 - Nitrite + Nitrate (+)
 - Total Nitrogen (+)
 - Phosphorus (+)
- Well Nitrate + Nitrite
 - Ammonia (+)
 - Nitrate + Nitrite (+)
 - Total Nitrogen (+)
 - Phosphorus (+)

- Unknown management practice
 - Ammonia (-/+)
 - Nitrate + Nitrite (+)
- Tailwater
 - Total Nitrogen (+)
 - Phosphorus (+)
- Water Table Depth
 - Ammonia (+)
 - Phosphorus (+)

Top Predictors - Load

- Scheduled fertilizer application
 - Nitrate + Nitrite (+)
 - Total Nitrogen (+/-)
 - Phosphorus (+/-)
- Urease and/or nitrogen inhibitors
 - Nitrate + Nitrite (+)
 - Total Nitrogen (+)
 - Phosphorus (+)

2018 – Ranch Reporting

Well: $NO_3 + NO_2$

Summary

- Surface water quality is related to ground water
- Non-reporting is related to high analyte concentrations
- Other management practices not widely used
- Total nitrogen applied and in soil is not a predictor
- Limitations
 - Based on correlations
 - Limited robust models describing load
 - Limited well data / interpolation
 - Farm practices may be more related to trends in data than to cooccurring water quality.

Thank you!

Questions?

Salinas Valley Basin GSA GSP Overviews

August 18, 2021

Local Basins

Six subbasins fall partially or entirely under SVBGSA jurisdiction:

- 180/400-Foot Aquifer
- East Side Aquifer
- Langley Area
- Monterey
- Forebay Aquifer
- Upper Valley Aquifer

SUBBASIN (DWR No)	State-Designated Priority	
180/400 Ft. Aquifer (3-4.01)	High / Critical Condition of Overdraft	
East Side Aquifer (3-4.02)	High	
Langley Area (3-4.09)	High	
Monterey (3-4.10)	Medium	
Forebay Aquifer (3-4.04)	Medium	
Upper Valley Aquifer (3-4.05)	Medium	

SGMA Timeline and Steps to Sustainability

GSP Development: Discussions, Input & Direction

Subbasin Committees:

Draft Chapters: Released June 2020 – August 2021

➤ Comments:

- Comments received throughout the process
- Comment table, comment letters and responses

➢ Board of Directors released four draft GSPs for public comment

➢ Board of Directors Public Hearing: December 9th, 2021

➢GSPs to be submitted to DWR: January 2022

<u>Workshops</u>

Brown Act and Conflict of Interest Sustainable Management Criteria Water Law Watershed Overview GSP Web Map Small Drinking Water Systems Pumping Allocations Funding Mechanisms Water Budgets and Modeling Communications and Implementation SVIHM/SVOM Model Workshop

Each of the Six Sustainability Indicators has:

- A statement of what is *significant and unreasonable* for the GSP
- *Minimum thresholds* quantitative value that define what is significant and unreasonable at every measuring point
- Undesirable results combination of minimum thresholds exceedances for the whole subbasin
- *Measurable objectives* are quantitative goals
- GSPs must clearly define a planned pathway to reach sustainability in the form of interim milestones towards measurable objectives, and show actual progress in annual reporting

Groundwater conditions SMC – Subsidence

Groundwater conditions SMC – Groundwater Quality

Still being developed

Degraded Groundwater Quality

Measurable Objective (MO)

Zero additional exceedances of either the regulatory drinking water standards (potable supply wells) or the Basin Plan objectives (irrigation supply wells) beyond those observed in 2019 for groundwater quality constituents of concern.

Minimum Threshold (MT) Same as the measurable objective.

Undesirable Result: The minimum threshold is exceeded as a direct result of projects or management actions taken as part of GSP implementation.

Upper Valley GSP Overview

Drinking Water Systems Dependent on Groundwater

Water Systems	
Local and State Small (2 – 14 connections)	14
Small Public (15 – 199 connections)	9
Large Public (200+ connections)	3

Basin Setting - Topography

Upper Valley Groundwater Budget Summary

- Overall there is no chronic decline in water levels or storage and the historical water budget shows the Upper Valley is in balance
- Historical and future water budgets are both averages of many years/hydrologic periods
- Future water budget incorporates average climate change, but does not represent shortterm climate change effects
- The sustainable yield is the maximum amount of extraction that can occur without causing undesirable results as defined for each sustainability indicator
 - Historical sustainable yield/pumping ranges from 108,500 to 129,600 AF/yr.
 - Future sustainable yield is about 117,000 AF/yr.

Groundwater conditions/SMC – Groundwater Levels

Example well

Chronic Lowering of Groundwater Levels

Measurable Objective (MO): Set to 2011 groundwater elevations.

Minimum Threshold (MT): Set to 5 feet below the lowest groundwater elevation between 2012 and 2016.

Undesirable Result: More than 15% of groundwater elevation minimum thresholds are exceeded.

Groundwater conditions/SMC – Groundwater Levels and Storage

Chronic Lowering of Groundwater Levels

Measurable Objective (MO): Set to 2011 groundwater elevations.

Minimum Threshold (MT): Set to 5 feet below the lowest groundwater elevation between 2012 and 2016.

Undesirable Result: More than 15% of groundwater elevation minimum thresholds are exceeded. Reduction in Groundwater Storage Measurable Objective (MO):

Established by proxy using groundwater elevations. Set to the same as groundwater levels measurable objectives

Minimum Threshold (MT): Established by proxy using groundwater elevations. Set to the same as groundwater levels minimum thresholds

Undesirable Result: More than 15% of groundwater elevation minimum thresholds are exceeded.

Representative Monitoring Sites

Wells with groundwater levels above the MO in 2019 are circled in GREEN

Wells with groundwater levels below the MT in 2019 are circled in RED

Groundwater conditions/SMC – Interconnected Surface

Water

Depletion of Interconnected surface water (ISW)

Measurable Objective (MO):

Established by proxy using shallow groundwater elevations observed in 2011 near locations of ISW

Minimum Threshold (MT): Established by proxy using shallow groundwater elevations observed in 2016 near locations of ISW

Undesirable Result:

There is an exceedance of the minimum threshold in a shallow groundwater monitoring well used to monitor ISW.

- No interconnected surface water monitoring points yet
 - Green dots are USGS gauge and MCWRA River Series measurement site
 - Pink dots are existing wells that will be added to network

One new well will be added (pink star)

Summary of Current Conditions in Relation to SMC

- Upper Valley Aquifer Subbasin has not historically been in overdraft, nor experienced chronic lowering of groundwater levels
- From 1980 to 2016, the basin was in overdraft during only 5 years
- However, there are a few areas away from the river where groundwater elevations have been declining
- Given that the Subbasin's extraction is currently close to the sustainable yield, this GSP includes a robust set of potential management actions and projects that could be undertaken if needed

Upper Valley SMC TAC

Technical committee that reviews groundwater conditions and provides science-based advice on management actions & projects to Subbasin Planning Committee.

Will consider recharge projects, demand management, and groundwater quality mitigation.

Cost: staffing costs plus \$10,000/yr.

Conservation & Ag BMPs

Promotes agricultural best management practices (BMPs) and supports use of evapotranspiration data as an irrigation management tool for growers.

Cost: Approximately \$100,000 for 4 workshops, grant writing, and demonstration trials. Cost could be reduced if shared between subbasins.

Fallowing, Fallow Bank, & Ag Land Retirement

A voluntary program of incentives for fallowing or retiring agricultural land

Includes a fallow bank, whereby anybody fallowing land could draw against the bank to offset lost profit.

Cost: \$195-\$395/AF if land is fallowed, \$810-\$2,000/AF if land is retired (can be scaled to desired amount)

MANAGEMENT ACTIONS

MCWRA Drought Technical Advisory Committee

Support the existing Drought Technical Advisory Committee (D-TAC), which plans reservoir releases during drought conditions.

No additional costs since already formed.

Reservoir Reoperation

Collaborate with MCWRA to evaluate potential reoperation scenarios.

Could be paired with projects such as the MCWRA Interlake Tunnel and Winter Release with ASR projects.

Cost: approximately \$400,000 - \$500,000

Management Actions

Multi-benefit Stream Channel Improvements

Prune native vegetation and remove non-native vegetation, manage sediment, and enhance floodplains for recharge. Includes 3 components:

1. **Stream Maintenance Program**, Multi-subbasin cost of \$0.6M-\$1.0M/yr.

2. **Invasive Species Eradication**, Multi-subbasin benefits of 2,790-20,880 AF/yr., cost of \$16.5M or \$60-\$600/AF

3. Floodplain Enhancement and Recharge, benefits of 400 AF/yr. for 4 basins in Upper Valley alone, cost of \$4.5M or \$930/AF

Managed Aquifer Recharge with Overland Flow

Description: Construct recharge basins for managed aquifer recharge of overland flow before it reaches streams.

Benefits: approximately 400 AF/yr. for 4 recharge basins; could be scaled up or down

Cost: \$4,128,000 for 4 recharge basins, or \$870/AF

Project Options Over 50 Year Planning Horizon

Implementation Actions

Well Registration

• Register all production wells, including domestic wells

Water Quality Partnership

 Form a working group for agencies and organizations to collaborate on addressing water quality concerns.

GEMS Expansion & Enhancement

 Update current MCWRA GEMS program, by collecting groundwater extraction data from wells in areas not currently covered by GEMS and improving data collection

Dry Well Notification System

 Develop a system for well owners to notify the GSA if their wells go dry. Refer those owners to resources to assess and improve their water supplies. Form a working group if concerning patterns emerge.

Forebay Aquifer Subbasin GSP Overview

Prepared by

Drinking Water Systems Dependent on Groundwater

Water Systems	
Local and State Small (2 – 14 connections)	40
Small Public (15 – 199 connections)	21
Large Public (200+ connections)	5

Basin Setting - Topography

- Arroyo Seco Cone
 - Alluvial fan
 - Coarser material than greater Forebay Subbasin
- Arroyo Seco Cone Management Area is outlined in pink

Forebay Groundwater Budget Summary

- Overall there is no chronic decline in water levels or storage and the historical water budget shows the Forebay is in balance
- Historical and future water budgets are both averages of many years/hydrologic periods
- Future water budget incorporates average climate change, but does not represent short-term climate change effects
- The sustainable yield is the maximum amount of extraction that can occur without causing undesirable results as defined for each sustainability indicator.
 - Greater Forebay Subbasin historical sustainable yield/pumping ranges from 151,100 to 174,500 AF/yr and 44,400 to 53,000 AF/yr for the ASMCA
 - Future sustainable yield is about 179,200 AF/yr. for the Greater Forebay Subbasin and about 55,400 AF/yr. for the ASMCA

Groundwater conditions/SMC – Groundwater Levels and Storage

No wells were Chronic lowering of **Reduction of** groundwater levels below the MT in groundwater storage SMC 2019 **Measurable Objective Measurable Objective** Wells circled in (MO): (MO): Set to zero when the 2015 groundwater elevations + green were above groundwater elevations are held 75% of difference between the MO in 2019 at the groundwater level 2015 and 1998 measurable objectives. **Minimum Threshold Minimum Threshold** (MT): (MT): Set to December 2015 Set to -267.000 acre-feet below groundwater elevations the measurable objective. This reduction is based on the groundwater level minimum thresholds. **Undesirable Result:** Over the course of any one year, more than 15% of **Undesirable Result:** groundwater elevation minimum There is an exceedance of the thresholds are exceeded. minimum threshold.

EXPLANATION Salinas Valley Groundwater Basin Forebay Aquiler Subbasin \$105F-82ND4 Arroyo Seco Cone Management Representative Monitoring Site Source MCHRA 75/05E-00R5 15/05E-12E0 175/04E-19001 178/05E-27A0 \$8:07E-16083 185/07E-20K01 85/04E-24801 CT 185/065-25 105/078-3 195/078-05800 105/07E-04001 195/D4E-01H01

Depletion of Interconnected Surface Water (ISW)

Measurable Objective (MO):

Established by proxy using shallow groundwater elevations near locations of ISW, are set to 75% of the distance between 2015 and 1998 shallow groundwater elevations.

Minimum Threshold (MT): Established by proxy using shallow

groundwater elevations near locations of ISW, are set to groundwater elevations observed in December 2015.

Undesirable Result:

There is an exceedance of the minimum threshold in a shallow groundwater monitoring well used to monitor ISW.

Groundwater conditions/SMC – Interconnected (ISW) Surface Water

- No interconnected surface water monitoring points yet
 - Green dots are USGS gauge and MCWRA River Series measurement site
 - Pink dots are existing wells that will be added to network
- One shallow well will be added on Arroyo Seco (pink star)

Summary of Current Conditions in Relation to SMC

- Forebay Aquifer Subbasin has not historically been in overdraft, nor experienced chronic lowering of groundwater levels
- From 1980 to 2016, the subbasin was in overdraft during only 3 years
- The Arroyo Seco Cone Management Area has not historically been in overdraft, nor experienced chronic lowering of groundwater levels
- Given that the Subbasin's extraction is currently close to the sustainable yield, this chapter includes a robust set of potential management actions and projects that could be undertaken if needed

Improve Rural Residential Water Quality in Arroyo Seco Cone Management Area

Description: Educate rural residents about common groundwater quality issues and options for obtaining safe and aesthetic water.

Benefits: Bottled water, in-home reverse osmosis, and/or an expansion of public water systems

Costs: \$3,000 for outreach and education.

Watershed Protection Policy for the Arroyo Seco River

- Ensure continued recharge from Arroyo Seco River and habitat for threatened fish
- Costs would be staff time only to prepare policy resolutions for the ASGSA and SVBGSA Board of Directors

MANAGEMENT ACTIONS FOR ASCMA

Eastside Aquifer Subbasin GSP Overview

Drinking Water Systems Dependent on Groundwater

Water Systems	
Local and State Small (2 – 14 connections)	59
Small Public (15 – 199 connections)	31
Large Public (200+ connections)	4

Hydrogeologic Conceptual Model

Eastside Groundwater Budget Summary

- ES has experienced chronic declines in groundwater levels resulting in a loss in storage of 10,000 AF/yr.
- Historical and future water budgets are both averages of many years/hydrologic periods
- Future water budget incorporates average climate change, but does not represent short-term climate change effects
- The sustainable yield is the maximum amount of extraction that can occur without causing undesirable results as defined for each sustainability indicator.
 - Historical pumping: GEMS (average +/- standard deviation) 79,300 to 96,700 AF/yr.
 - Historical sustainable yield ranges from 69,300 to 86,700 AF/yr.
 - Future sustainable yield is about 83,300 AF/yr.

Groundwater conditions/SMC – Groundwater Levels

Chronic lowering of groundwater levels

Measurable Objective (MO): 1999 groundwater elevations

Minimum Threshold		
(MT):		
2015 groundwater elevations		

100

95

90 85

80 75

70

65

60

55

50

Undesirable Result: More than 15% of groundwater elevation minimum thresholds are exceeded. **In 2019, one well was above the MO, and the rest had water levels between the MO and MT**

Example Well

16S/05E-17R01

Groundwater conditions/SMC – Groundwater Storage

Reduction in Groundwater Storage

Measurable Objective (MO): Established by proxy using groundwater elevations. Set to the same as groundwater levels measurable objectives.

Minimum Threshold (MT): Established by proxy using groundwater elevations. Set to the same as groundwater levels minimum thresholds.

Undesirable Result: More than 15% of groundwater elevation minimum thresholds are exceeded..

Groundwater conditions/SMC – Interconnected Surface Water

Depletion of Interconnected surface water (ISW)

Measurable Objective (MO): Established by proxy using shallow groundwater elevations observed in 1999 near locations of ISW.

Minimum Threshold (MT): Established by proxy using shallow groundwater elevations observed in 2015 near locations of ISW.

Undesirable Result: There is an exceedance of the minimum threshold in a shallow groundwater monitoring well used to monitor ISW.

- No locations of interconnected surface water now, but there can be in the future
- No interconnected surface water monitoring points yet
- One shallow well will be added on Gabilan Creek (yellow star) near USGS gauge to monitor ISW in Langley

Groundwater conditions/SMC – Seawater Intrusion

Seawater Intrusion

Measurable Objective (MO): The 500 mg/L chloride isocontour at the Subbasin boundary, resulting in no seawater intrusion in the Eastside Subbasin.

Minimum Threshold (MT): Same as the measurable objective.

Undesirable Result:

Any exceedance of the minimum threshold, resulting in mapped seawater intrusion within the Subbasin boundary.

- No seawater intrusion in the subbasin
- Aim to keep seawater intrusion out of the Subbasin

Current Conditions - Overdraft

- Eastside Subbasin has experienced <u>chronic lowering of groundwater</u> <u>elevations</u> and has historically been in overdraft (10,000 AF/yr.). It is projected to still be in overdraft throughout the GSP planning horizon unless projects and management actions bring extraction and the sustainable yield in line.
- Overdraft can be mitigated by reducing pumping or recharging the basin, either through direct or in-lieu means.
- The potential projects and management actions in this chapter are sufficient to mitigate existing overdraft.

Increased Recharge

 A1. Overland Flow MAR
 A2. Floodplain Enhancement and Recharge

Eastside

Projects &

Management

Actions

Regional Alternative Water Supplies

> D1. Regional Municipal Supply Project
> D2. CSIP
> Optimization and

Demand Management

- E1. Conservation and Ag BMPs
- E2. Fallowing, Fallow Bank, and Agricultural Land Retirement

 E3. Pumping Allocations and Controls

Surface Water Diversions

Diversion at Chualar or Soledad • B3. Surface Water Diversion from Gabilan Creek

Alternative Water Supplies

 C1. Eastside Irrigation Water Supply Project (Somavia Road)
 C2. Salinas Scalping

Salinas River Projects

 F1. Multi-Benefit Stream Channel Improvements
 F2. Winter Releases with ASR
 F3. MCWRA Interlake Tunnel and Spillway

•F4. MCWRA D-TAC

Floodplain Enhancement and Recharge

Description: This project restores areas along creeks and floodplains with to slow and sink flood waters and encourage streambed and floodplain infiltration.

Project Benefit: Up to 2,300 AF/yr. available for recharge, 1,000 AF/yr. in increased storage, less erosion, less flooding.
Cost: approximately \$12,596,000, Unit Cost: \$1,050/A

Pumping Allocations and Controls

Description: Pumping allocations and control based on various criteria (allocation structure not yet defined).
 Project Benefit: Can be scaled to different levels.
 Cost: Approximately \$400,000 for establishment of pumping allocations and controls.

INCREASED RECHARGE --- DEMAND MANAGEMENT

11043 Diversion at Chualar or Soledad

Description: Constructs diversion facilities and pumps the water to the Eastside Subbasin where the water can be recharged (or used directly).

Project Benefit (modeled for Chualar diversion): Annual average of 6,000 AF/yr. of excess streamflow captured. 4,600 AF/yr. increase in storage. Highly variable.

Chualar Capital cost: \$55,684,000; Unit cost \$1,280/AF Soledad Capital Cost: \$104,688,000; Unit cost \$2,110/AF (both including O&M)

Surface Water Diversion from Gabilan Creek

10/1/10/06

Description: Diverst flood flows from Gabilan Creek and recharges water at a nearby location in recharge basins.

Project Benefit: Based on analysis of historical data, the expected benefit of this project would potentially capture 350 AF/yr. with a diversion structure with a capacity of 20 cfs.

Capital cost: \$10,074,000. Unit cost \$2,350/AF including O&M

SURFACE WATER DIVERSIONS FOR RECHARGE OR DIRECT USE

Salinas Scalping Plant

Description: Builds a scalping plant for the future growth area on the east side of Salinas.

Project Benefit and Cost: in-lieu recharge, and increased groundwater elevations and storage.

250,000 gallon per day (gpd) scalping plant generates 280 AF/yr. With a capital cost of \$9,839,000, the unit cost is \$6,480/AF

500,000 gpd scalping plant generates 560 AF/yr. With a capital cost of \$14,183,000, the unit cost is \$4,730/AF

*cost does not include distribution systems

Eastside Irrigation Project (Somavia Road)

Description: Pumps 3,000 AF/yr. from the 180-Foot Aquifer in the 180/400-Foot Aquifer Subbasin on the SW side of the Salinas River, and distributes it for irrigation or recharge in the Eastside.

Project Benefit: increased groundwater elevations from reduced subbasin pumping and in-lieu use of imported water. ~3,000 AF/yr. available for in-lieu use or recharge, and ~1,600 AF/yr. increased storage.

Capital Cost: \$139,928,000.

Unit cost \$3,980/AF including O&M

ALTERNATIVE WATER SUPPLIES

Regional Municipal Supply Project

Description: Potential supplement to the seawater intrusion extraction barrier project. It would deliver water for direct potable use to municipal systems in the Eastside Subbasin. Regional Project Benefit: The proposed plant would produce up to 15,000 AF/yr. of desalinated water for the Salinas Valley. A portion of that would go to Eastside Subbasin.

Regional Capital Cost: \$375-\$395 million, Unit Cost: \$2,830-\$2,950/AF

CSIP Expansion

Description: This project would expand CSIP into agricultural land in or adjacent to the Eastside Subbasin and could reduce the amount of groundwater pumped from the Subbasin.

Regional Project Benefit: Expanding CSIP to land outside of the Eastside Subbasin may still have positive impacts on groundwater elevations within the Eastside Subbasin.

REGIONAL ALTERNATIVE WATER SUPPLIES

Langley Area Subbasin GSP Overview

Prepared by

Drinking Water Systems Dependent on Groundwater

Water Systems	
Local and State Small (2 – 14 connections)	350
Small Public (15 – 199 connections)	59
Large Public (200+ connections)	3

Basin Setting -Topography

- Hilly area
- Not like the other subbasins
- Underlain by fractured granite bedrock

Hydrogeologic Conceptual Model

DECREASED DEMAND PROJECTS

Pumping Allocations and Controls

- Description: Pumping allocations and control based on various criteria (allocation structure not yet defined).
- Project Benefit: The primary benefits expected for this project is that it is another demand-side management tool and would enhance sustainable yield and groundwater elevations. Working within a groundwater budget allows the subbasin to meet its sustainable yield volume.
- Cost: The cost would be relatively low cost in comparison to other projects; however, a more detailed analysis is needed.
Langley Groundwater Budget Summary

- Langley has experienced chronic declines in groundwater levels resulting in a loss in storage of 300 AF/yr.
- Historical and future water budgets are both averages of many years/hydrologic periods
- Future water budget incorporates average climate change, but does not represent short-term climate change effects
- The sustainable yield is the maximum amount of extraction that can occur without causing undesirable results as defined for each sustainability indicator.
 - Historical pumping: GEMS (average +/- standard deviation) 800 to 1,400 AF/yr.
 - Historical sustainable yield ranges from 800 to 1,400 AF/yr.
 - Future sustainable yield is about 900 AF/yr.

All wells currently have water levels between the MO and MT

Groundwater conditions/SMC -

Groundwater Levels

Reduction in Groundwater Storage

Measurable Objective (MO): Established by proxy using groundwater elevations. Set to the same as groundwater levels measurable objectives.

Minimum Threshold (MT): Established by proxy using groundwater elevations. Set to the same as groundwater levels minimum thresholds.

Undesirable Result: More than 15% of groundwater elevation minimum thresholds are exceeded..

Groundwater conditions/SMC – Interconnected Surface Water

Depletion of Interconnected surface water (ISW)

Measurable Objective (MO):

Established by proxy using shallow groundwater elevations observed in 2010 near locations of ISW, adjusted based on wellspecific elevation assessments.

Minimum Threshold (MT):

Established by proxy using shallow groundwater elevations observed in 2019 near locations of ISW, adjusted based on wellspecific elevation assessments.

Undesirable Result:

There is an exceedance of the minimum threshold in a shallow groundwater monitoring well used to monitor ISW.

- No interconnected surface water monitoring points yet
- One shallow well will be added on Gabilan Creek (orange star) and will be paired with USGS gauge in Eastside (green star)

Seawater Intrusion

Measurable Objective (MO): The 500 mg/L chloride isocontour at the Subbasin boundary, resulting in no seawater intrusion in the Langley Subbasin.

Minimum Threshold (MT): Same as the measurable objective

Undesirable Result:

Any exceedance of the minimum threshold, resulting in mapped seawater intrusion within the Subbasin boundary.

Groundwater conditions/SMC – Seawater Intrusion

- No seawater intrusion in the subbasin
- Minimum threshold is at the subbasin boundary

Summary of Current Conditions

- Langley Area is mostly residential, dependent on small state and local water systems
- Langley Area Subbasin has historically been in overdraft on the order of 300 AF/yr.
- From 1980 to 2016, the basin was in overdraft during 9 years
- This GSP includes a robust set of potential projects and management actions that are sufficient to mitigate overdraft

Langley Projects & Management Actions

Decentralized Residential In Lieu Recharge Projects

 Small-scale projects initiated by homeowners and business owners, including rooftop rainwater harvesting, rain gardens, and graywater systems

•Benefit: If 75 households install 5000-gallon rain barrels or graywater systems, it would save up to 4 AF/yr. or 1.6 AF/yr. respectively

•Cost to GSA (not for homeowner implementation or incentives):\$50,000 for 5 workshops on rainwater harvesting and \$50,000 for 5 workshops on graywater reuse

Decentralized Stormwater Recharge

Medium scale bioswales and recharge basins on non-agricultural land.

Benefit: If 1% of the Subbasin is converted from an area of runoff to an area of recharge, 279 AF/yr.

Cost to GSA (not for implementation or incentives): \$150,000 - \$200,000 to encourage projects through outreach, site assessments, and assistance with planning

RECHARGE PROJECTS

IMPLEMENTATION (all subbasins)

Implementation Schedule

Adaptive Management

Image source: https://reefresilience.org/management-strategies/marine-protected-areas/adaptive-management

Considerations in Addressing Comments

Factual inaccuracies

- Changes that improve the clarity of the GSP
- Changes that improve the clarity of the GSP that require significant effort
- Changes to decisions of the Subbasin Committees
- Policy issues that need to engage the Board
- Data requests are not directly related to completing the GSP
- Requests that are not necessary now, but maybe in the future
- Data requests or policy decisions outside of the scope of the GSA

Upper Valley Chapter 6 – Water Budgets

Historical Water Budget

	Modeled Historical Average (WY 1980-2016)	
Groundwater Pumping - SVIHM	-91,600	
Groundwater Pumping – GEMS (average +/- standard deviation)	-108,500 to -129,600	
Net Stream Exchange	89,100	
Groundwater Evapotranspiration	-57,900	
Deep Percolation of precipitation and irrigation water	57,300	
Net Flow from Adjacent Subbasins/Basin	1,900	
Net Storage Gain (+) or Loss (-)	-1,200	
+ Indicates		

in storage

Historical Sustainable Yield

- The sustainable yield is the maximum amount of extraction that can occur without causing undesirable results as defined for each sustainability indicator
- SVIHM generated water budget was adjusted with best available extraction data - GEMS
- UV has not experienced chronic declines in groundwater levels or storage, so change in storage is 0 AF/yr.
- Historical sustainable yield ranges from 108,500 to 129,600 AF/yr.

in storage

Upper Valley Chapter 6 – Water Budgets

Future Water Budget

	Model Estimate 2070
Groundwater Pumping - SVOM	-90,900
Groundwater Pumping – GEMS-adjusted	-117,000
Net Stream Exchange	73,200
Groundwater Evapotranspiration	-46,300
Deep Percolation of precipitation and irrigation water	66,700
Net Flow from Adjacent Subbasins/Basin	8,300
Net Storage Gain (+) or Loss (-)	10,800

Future Sustainable Yield

- UV is has not experienced chronic declines in groundwater levels or storage, so change in storage is 0 AF/yr.
- Future sustainable yield is about 117,000 AF/yr.

Forebay Chapter 6 – Water Budgets

Historical Water Budget

	Greater Forebay – Modeled Historical Average (WY 1980-2016)	ASCMA – Modeled Historical Average (WY 1980-2016)
Groundwater Pumping – SVIHM	-108,700	-34,200
Groundwater Pumping – GEMS (average +/- standard deviation)	-151,100 to - 174,500	-44,400 to - 53,000
Net Stream Exchange	90,300	15,600
Groundwater Evapotranspiration	-32,100	-600
Deep Percolation of precipitation and irrigation water	52,200	16,900
Net Flow from Adjacent Subbasins/Basin	0	1,600
Net Storage Gain (+) or Loss (-)	1,800	-600

Historical Sustainable Yield

- The sustainable yield is the maximum amount of extraction that can occur without causing undesirable results as defined for each sustainability indicator
- SVIHM generated water budget was adjusted with best available extraction data - GEMS
- The Greater Forebay Subbasin and ASCMA have not experienced chronic declines in groundwater levels or storage, so change in storage is 0 AF/yr.
- Greater Forebay Subbasin historical sustainable yield ranges from 151,100 to 174,500 AF/yr.
- ASCMA historical sustainable yield ranges from 44,400 to 53,000 AF/yr.

Forebay Chapter 6 – Water Budgets

Future Water Budget

	Greater Forebay – Model Estimate 2070	ASCMA – Model Estimate 2070
Groundwater Pumping – SVOM	-117,800	-37,100
Groundwater Pumping – GEMS- adjusted	-179,200	-55,400
Net Stream Exchange	105,700	23,800
Groundwater Evapotranspiration	-35,100	-1,500
Deep Percolation of precipitation and irrigation water	57,500	16,600
Net Flow from Surrounding Watersheds	0	-1,500
Net Storage Gain (+) or Loss (-)	9,600	1,600

Future Sustainable Yield

- The Greater Forebay Subbasin and ASCMA have not experienced chronic declines in groundwater levels or storage, so change in storage is 0 AF/yr.
- Future sustainable yield is about 179,200 AF/yr. for the Greater Forebay Subbasin
- Future sustainable yield is about 55,400 AF/yr. for the ASMCA

Eastside Chapter 6 – Water Budgets

Historical Water Budget

		Modeled Historical Average (WY 1980-2016)
	Groundwater Pumping	-72,600
	Groundwater Pumping – GEMS (average +/- standard deviation)	-79,300 to -96,700
ľ	Flow from Drains	0
	Net Stream Exchange	10,500
	Deep Percolation	33,400
	Net Flow from Adjacent Subbasins/Basin	7,100
	Groundwater Evapotranspiration	-200
	Net Storage Gain (+) or Loss (-)	-21,700

Historical Sustainable Yield

- The sustainable yield is the maximum amount of extraction that can occur without causing undesirable results as defined for each sustainability indicator
- SVIHM generated water budget was adjusted with best available extraction data - GEMS
- ES has experienced chronic declines in groundwater levels resulting in a loss in storage of 10,000 AF/yr.
- Historical sustainable yield ranges from 69,300 to 86,700 AF/yr.

Eastside Chapter 6 – Water Budgets

Future Water Budget

	Model Estimate 2070
Groundwater Pumping	-90,900
Groundwater Pumping – GEMS-adjusted	-83,300
Flow from Drains	-100
Net Stream Exchange	14,400
Deep Percolation	36,000
Net Flow from Adjacent Subbasins/Basin	5,500
Groundwater Evapotranspiration	-800
Net Storage Gain (+) or Loss (-)	-20,400

Future Sustainable Yield

- Eastside has experienced chronic declines in groundwater levels resulting in a loss in storage of 10,000 AF/yr.
- Future sustainable yield is about 83,300 AF/yr.

Langley Chapter 6 – Water Budgets

Historical Water Budget

800	Modeled Historical Average (WY 1980-2016)
Groundwater Pumping – SVIHM	-1,200
Groundwater Pumping – GEMS (average +/- standard deviation)	-800 to -1,400
Flow to Drains	-300
Net Stream Exchange	-3,000
Deep Percolation	9,800
Net Flow from Eastside	-1,100
Net Flow from Surrounding Watersheds	100
Net Flow from Pajaro	-300
Net Flow from 180/400-Foot	-3,700
Groundwater Evapotranspiration	-1,000
Net Storage Gain (+) or Loss (-)	-800

74

Historical Sustainable Yield

- The sustainable yield is the maximum amount of extraction that can occur without causing undesirable results as defined for each sustainability indicator
- SVIHM generated water budget was adjusted with best available extraction data - GEMS
- Langley has experienced chronic declines in groundwater levels resulting in a loss in storage of 300 AF/yr.
- Historical sustainable yield ranges from 800 to 1,400 AF/yr.

Langley Chapter 6 – Water Budgets

Future Water Budget

	Model Estimate 2070
Groundwater Pumping*	-1,400
Groundwater Pumping – GEMS-adjusted	900
Flow to Drains	-600
Net Stream Exchange	-1,100
Deep Percolation	11,600
Net Flow from Eastside	-900
Net Flow from Surrounding Watersheds	100
Net Flow from Pajaro	-300
Net Flow from 180/400-Foot	-4,300
Groundwater Evapotranspiration	-2,100
Net Storage Gain (+) or Loss (-)	1,000

75

Future Sustainable Yield

- Langley has experienced chronic declines in groundwater levels resulting in a loss in storage of 300 AF/yr.
- Future sustainable yield is about 900 AF/yr.

Groundwater conditions/SMC – Current Water Quality Exceedance Maps

Degraded Groundwater Quality

Measurable Objective (MO)

Zero additional exceedances of either the regulatory drinking water standards (potable supply wells) or the Basin Plan objectives (irrigation supply wells) beyond those observed in 2019 for groundwater quality constituents of concern.

> Minimum Threshold (MT) Identical to the measurable objective.

Undesirable Result:

The minimum threshold is exceeded as a direct result of projects or management actions taken as part of GSP implementation.

Groundwater conditions/SMC – Current Water Quality Exceedance Maps

Degraded Groundwater Quality

Measurable Objective (MO)

Zero additional exceedances of either the regulatory drinking water standards (potable supply wells) or the Basin Plan objectives (irrigation supply wells) beyond those observed in 2019 for groundwater quality constituents of concern.

Minimum Threshold (MT) Same as the measurable objective.

Undesirable Result: The minimum threshold is exceeded as a direct result of projects or management actions taken as part of GSP implementation.

Groundwater conditions/SMC – Current Water Quality Exceedance Maps ILRP On-Farm Domestic **ILRP** Irrigation **EXPLANATION EXPLANATION** 101 101 on Velay Groundaster Baseditrant Valley Cross-dwater Basin aper Walky Router Subbeen Valley Aquiller Subbasin the with Exception of RP On-Farm Domentic Nation an N Earnedances, 2013-201 State California State Mater State? GARD Program Snittle California State Maler Statet SAN ANTONIO SAN ANTONIO RESERVOR RESERVOR

Monterey Count

An Luis Obispo County

IENTO RESERVOIR

78

Monterey Count

An Luis Obispo County

IMPINTO RESERVOIR

Groundwater conditions/SMC – Current Water Quality Exceedance Maps

4. Degraded Groundwater Quality

Measurable Objective (MO)

Zero additional exceedances of either the regulatory drinking water standards (potable supply wells) or the Basin Plan objectives (irrigation supply wells) beyond those in 2019 for groundwater quality constituents of concern.

> Minimum Threshold (MT) Same as the measurable objective.

Undesirable Result: The minimum threshold is exceeded as a direct result of projects or management actions taken as part of GSP implementation.

Groundwater conditions/SMC – Current Water Quality Exceedance Maps

4. Degraded Groundwater Quality

Measurable Objective (MO) Zero additional exceedances of either the regulatory drinking water standards (potable supply wells) or the Basin Plan objectives (irrigation supply wells) beyond those observed in 2019 for groundwater quality constituents of concern.

> Minimum Threshold (MT) Same as the measurable objective

Undesirable Result:

The minimum threshold is exceeded as a direct result of projects or management actions taken as part of GSP implementation.

5. Subsidence

Measurable Objective (MO): Zero net long-term subsidence, with no more than 0.1 foot per year of estimated land movement to account for InSAR errors

Minimum Threshold (MT): Zero net long-term subsidence, with no more than 0.1 foot per year of estimated land movement to account for InSAR errors

Undesirable Result: There is an exceedance of minimum thresholds for subsidence.

Negligible current subsidence
Future subsidence due to groundwater conditions is unlikely

 Minimum threshold and measurable objective set at zero long-term subsidence

4. Subsidence

Measurable Objective (MO): 0.1 feet per year. This is a long-term rate of zero feet per year plus 0.1 feet per year of estimated land movement to account for InSAR measurement errors.

Minimum Threshold (MT):

0.133 feet per year. This is the rate that results in less than one foot of cumulative subsidence over a 30-year implementation horizon, plus 0.1 feet per year of estimated land movement to account for InSAR measurement errors.

Undesirable Result: There is no exceedance of minimum threshold for subsidence.

- Negligible current subsidence
- Future subsidence due to groundwater conditions is unlikely

5. Subsidence

Measurable Objective (MO): Zero net long-term subsidence, with no more than 0.1 foot per year of estimated land movement to account for InSAR errors.

Minimum Threshold (MT): Same as the measurable objective.

Undesirable Result: There is an exceedance of minimum thresholds for subsidence.

- Negligible current subsidence
- Future subsidence due to groundwater conditions is unlikely
- Minimum threshold and measurable objective set at zero long-term subsidence

5. Subsidence

Measurable Objective (MO): Zero net long-term subsidence, with no more than 0.1 foot per year of estimated land movement to account for InSAR errors

Minimum Threshold (MT): Same as the measurable objective

Undesirable Result: There is an exceedance of minimum thresholds for subsidence.

Negligible current subsidence

Future subsidence due to groundwater conditions is unlikely

Groundwater conditions/SMC – Groundwater Storage

